In this paper we consider the problem of motion planning for perception of a target position. A robot has to move to a position from where it can sense the target, while minimizing both motion and perception costs. The problem of finding paths for robots executing perception tasks can be solved optimally using informed search. In perception path planning, the solution when considering a straight line without obstacles is used as heuristic. In this work, we propose a heuristic that can improve the search efficiency. In order to reduce the node expansion using a more informed search, we use the robot Approximate Visibility Map (A-VM), which is used as a representation of the observability capability of a robot in a given environment. We show how the critical points used in A-VM provide information on the geometry of the environment, which can be used to improve the heuristic, increasing the search efficiency. The critical points allow a better estimation of the minimum motion and perception cost for targets in non-traversable regions that can only be sensed from further away. Finally, we show the contributed heuristic with improvements dominates the base PA* heuristic built on the euclidean distance, and then present the results of the performance increase in terms of node expansion and computation time.