Self-diagnosis is a fundamental capability of self-adaptive systems. In order to recover from faults, systems need to know which part is responsible for the incorrect behavior. In previous work we showed how to apply a design-time diagnosis technique at run time to identify faults at the architectural level of a system. Our contributions address three major shortcomings of our previous work: 1) we present an expressive, hierarchical language to describe system behavior that can be used to diagnose when a system is behaving different to expectation; the hierarchical language facilitates mapping low level system events to architecture level events; 2) we provide an automatic way to determine how much data to collect before an accurate diagnosis can be produced; and 3) we develop a technique that allows the detection of correlated faults between components. Our results are validated experimentally by injecting several failures in a system and accurately diagnosing them using our algorithm.