INTERPRETING DEEP LEARNING MODELS
FINE-TUNED FOR DETECTING VULNERABILITIES
RELATED TO MISSING CODE

Claudia Mamede1,2, Claire Le Goues2, José Campos1,3, Rui Abreu1,4
1Faculty of Engineering, University of Porto, Portugal
2Carnegie Mellon University, USA
3LASIGE, Faculty of Sciences, University of Lisbon, Portugal
4INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal

MOTIVATION

BACKGROUND. LEARNING-BASED VULNERABILITY DETECTION IS TYPICALLY TREATED AS A BINARY CLASSIFICATION PROBLEM.

PROBLEM 1. **MODEL'S HIGH ACCURACY DOES NOT ENSURE REAL-WORLD EFFECTIVENESS**

IF the code has > 500 LoC, how can we find and fix the vulnerability?

PROBLEM 2. **EXISTING xAI METHODS ONLY EXPLAIN TOKENS PRESENT IN THE INPUT**

How can we explain vulnerabilities arising from the absence of code?

METHODOLOGY

OUR INTERPRETABILITY STRATEGY USING TAINT ANALYSIS

VULNERABILITY DETECTION

CONVERT CODE TO

FIND TAINTED VARIABLES (A)

FIND CONTROL STRUCTURES (B)

COMPLEMENTING xAI, WE MAY HELP US LOCATE VULNERABILITIES.

REPORT EVALUATION USING SECLINT

INTERPRETABILITY STANDARD

We reviewed prior work to identify key properties in security reports that help developers understand and address vulnerabilities.

1. **VULN-DETET**: \textsc{<weakness name/id> at <location> (severity: <level>)}
2. **WHAT**: describe the weakness/problem
3. **WHY**: describe its impact
4. **HOW**: describe how the weakness can be triggered
5. **WHEN**: describe when the problem was found
6. **WHERE**: describe where the problem is located

(?) MANDATORY FIELDS

(?) OPTIONAL FIELDS

Acknowledgments: This work was partially funded by Fundação para a Ciência e a Tecnologia under the scope of the CMU/Portugal Program

Future Work

We are still refining the interpretability standard

Check out the QR code below for the updated version & give us feedback!