Gomes A.D.; Sa├║de J.

Applied Mathematics & Optimization
2018

pp 1

-
32

Abstract:

Here, we develop numerical methods for finite-state mean-field games (MFGs) that satisfy a monotonicity condition. MFGs are determined by a system of differential equations with initial and terminal boundary conditions. These non-standard conditions make the numerical approximation of MFGs difficult. Using the monotonicity condition, we build a flow that is a contraction and whose fixed points solve both for stationary and time-dependent MFGs. We illustrate our methods with a MFG that models the paradigm-shift problem.