Location prediction enables us to use a person’s mobility history to realize various applications such as efficient temperature control, opportunistic meeting support, and automated receptionists. Indoor location prediction is a challenging problem, particularly due to a high density of possible locations and short transition distances between these locations. In this paper we present Indoor-ALPS, an Adaptive Indoor Location Prediction System that uses temporal-spatial features to create individual daily models for the prediction of when a user will leave their current location (transition time) and the next location she will transition to. We tested Indoor-ALPS on the Augsburg Indoor Location Tracking Benchmark and compared our approach to the best performing temporal-spatial mobility prediction algorithm, Prediction by Partial Match (PPM). Our results show that Indoor-ALPS improves the temporal-spatial prediction accuracy over PPM for look-aheads up to 90 minutes by 6.2%, and for up to 30 minute look-aheads by 10.7%. These results demonstrate that Indoor-ALPS can be used to support a wide variety of indoor mobility prediction-based applications.