Close this search box.

Toninho B., Caires L., Pfenning F.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

pp 350



In prior research we have developed a Curry-Howard interpretation of linear sequent calculus as session-typed processes. In this paper we uniformly integrate this computational interpretation in a functional language via a linear contextual monad that isolates session-based concurrency. Monadic values are open process expressions and are first class objects in the language, thus providing a logical foundation for higher-order session typed processes. We illustrate how the combined use of the monad and recursive types allows us to cleanly write a rich variety of concurrent programs, including higher-order programs that communicate processes. We show the standard metatheoretic result of type preservation, as well as a global progress theorem, which to the best of our knowledge, is new in the higher-order session typed setting.